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Delay tolerant networks (DTNs) are wireless mobile networks that do not guarantee the existence of a
path between a source and a destination at any time. When two nodes move within each other’s trans-
mission range during a period of time, they can contact each other. The contact of nodes can be periodical,
predictable and nonpredictable. In this paper, we assume the contact of nodes is nonpredictable so that it
can reflect the most flexible way of nodes movement. Due to the uncertainty and time-varying nature of
DTNs, routing poses special challenges. Some existing schemes use utility functions to steer the routing in
the right direction. We find that these schemes do not capture enough information of the network. Thus,
we develop an extended information model that can capture more mobility information and use regres-
sion functions for data processing. Experimental results from both our own simulator and real wireless
trace data show that our routing algorithms based on the extended information model can increase
the delivery ratio and reduce the delivery latency of routing compared with existing ones.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction Due to the uncertainty and time-varying nature of DTNs, rout-
Delay Tolerant Network (DTN) is a hot research topic these days
(DTN Research Group). It is a type of wireless mobile networks that
does not guarantee the existence of a path between a source and a
destination at any time. When two nodes move within each other’s
transmission range during a period of time, they can contact or
meet each other. When they move out of their transmission ranges,
the connection is lost. A DTN can be described abstractly using a
graph. Each edge in this graph represents a contact. If there is no
contact with other host, the message to be delivered needs to be
stored in the local buffer of the current host until a connection
comes again. Depending on the application, the contact between
nodes can be periodic, or predictable or nonpredictable. Therefore,
the network must tolerate the delay of the message. Representa-
tive DTNs include sensor-based networks that use scheduled inter-
mittent connectivity, terrestrial wireless networks that cannot
ordinarily maintain end-to-end connectivity, satellite networks
that have moderate delays and periodic connectivity, and under-
water acoustic networks that display moderate delays and fre-
quent interruptions due to environmental factors. They also
include people carrying mobile devices moving in conferences,
university campuses and in social settings.
ll rights reserved.
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ing poses unique challenges compared to conventional wireless
networks. In the literature, some approaches are based on deter-
ministic mobility (Ghosh et al., 2005; Jain et al., 2004; Leguay
et al., 2005; Lindgren et al., 2004; Liu and Wu, 2007, 2008; Merugu
et al., 2004; Tariq et al., 2005; Wu et al., 2007; Zhao et al., 2004)
while some others are based on general mobility where nodes
mobility cannot be predicted (Chen and Murphy, 2001; Dubois-
Ferriere et al., 2003; Vahdat and Becker, 2000). In this paper, we
use the general mobility model which reflects the most flexible
way of nodes movement: nodes can move dynamically in different
directions with different speeds.

If the general mobility model is used, one rudimental approach
is flooding (Vahdat and Becker, 2000). However, this kind of meth-
od results in large number of message copies in the network and
thus consumes a high amount of bandwidth and energy which is
scarce in DTNs. Therefore some people use single-copy schemes
where at any time there is one holder or custodian of a message.
The key point now is how to select the next best router in the
neighborhood of the current custodian that has the highest poten-
tial to deliver the message to the destination.

The solution to this is the design of utility functions used by
several papers in the literature (Chen and Murphy, 2001; Dubois-
Ferriere et al., 2003; Juang et al., 2002; Spyropoulos et al., 2004).
That is, each node maintains a utility value for every other node
in the network, calculated by different criterion such as the last
number of times two nodes met, the average of nodes’ past meet-
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ing times, and the time elapsed since two nodes last met, etc. These
utility values essentially carry indirect information about relative
node locations, which get diffused through nodes’ mobility. There-
fore, algorithms can be designed so that the current custodian can
select the next best candidate from the nodes it can reach (includ-
ing itself) hoping that the candidate can forward the message clo-
ser to the destination based on the utility function.

After a closer look at these utility functions in the literature, we
think they do not capture enough information about network
mobility and there is still room to improve by deciding which
information to record and how to deal with it. In our preliminary
work in Chen et al. (2009), we extended the information recorded
in existing papers to capture more mobility features of the network
and used regression functions to process the data. The experimen-
tal results using self-written simulator showed that the routing
schemes developed based on the extended information model
can increase the delivery ratio and reduce the delivery latency of
routing compared with existing routing algorithms. In this paper,
we explain our methods in detail and further confirm the effective-
ness of the extended information model by conducting more
experiments using real traces.

In summary, our algorithms use general mobility model and
single-copy scheme. Our contributions in DTN routing are: (i) we
develop an extended information model that can capture more
mobility features in the network and adopt regression functions
for data processing so that better routing algorithms can be de-
rived; (ii) experimental results using both our own simulator and
real traces show that the routing algorithms based on the extended
information model have better delivery ratio and latency than the
existing ones.

The rest of the paper is organized as follows: Section 2 intro-
duces the related work, Section 3 describes our motivation, Section
4 puts forward our extended information model, Section 5 presents
the routing algorithms based on the extended information model,
Section 6 shows the experimental results and Section 7 concludes
the paper and points out the future work.
Fig. 1. An example of the routing process.
2. Related work

Routing in DTNs poses unique challenges compared to conven-
tional wireless networks due to the uncertainty and the time-vary-
ing nature of network connectivity. The addition of time dimension
significantly complicates the routing decision. In the literature,
some routing approaches are based on deterministic mobility
while some others are based on general mobility in which nodes
mobility is nonpredictable. The approaches based on deterministic
or semi-deterministic mobility include: the centralized routing ap-
proaches (Jain et al., 2004; Merugu et al., 2004), the ferry-based
routing (Tariq et al., 2005; Zhao et al., 2004; Wu et al., 2007), the
probability-based routing without a message delivery guarantee
(Ghosh et al., 2005; Leguay et al., 2005; Lindgren et al., 2004),
and the scalable routing in DTN where nodes have strict repetitive
motions (Liu and Wu, 2007; Liu and Wu, 2008).

If the general mobility model is used, when a source host wants
to find a route to a destination, since it does not know where the
destination lies, one rudimental approach is to perform a flood-
ing-based route discovery as in Vahdat and Becker (2000) where
whenever a host receives a message, it will pass it to all those hosts
it can reach directly at that time so that the spread of the message
is like the epidemic of a disease. The flooding-based routing uses
multiple copies of a single message to find independent path to
the destination so as to improve efficiency and robustness. How-
ever, it has nonneglectable drawbacks (Spyropoulos et al., 2004):
it consumes a high amount of bandwidth and energy; may result
in poor performance because of high contention for shared re-
sources. As the average node degree increases, it is not scalable
in terms of memory size needed and number of transmissions per-
formed. To overcome these drawbacks, single-copy schemes are
put forward.

In single-copy schemes, there is only one custodian for each
message. Therefore, the key point in designing efficient single-copy
schemes is the selection of the next best custodian, that is, the cur-
rent custodian tries to find, within the cluster of hosts that it can
reach directly at that moment, the host that is the next best candi-
date to relay the message to the destination. Thus a utility function
needs to be defined to compare the potential of each node to reach
the destination. Fig. 1 shows the routing process of a single-copy
scheme using some utility function. There are four continuous
snapshots (a)–(d) of the network in the figure, each showing the
custodian and the neighbors of the custodian at a particular time.
All other nodes in the network are not drawn for cleaner pictures.
Between the snapshots, the nodes are moving dynamically in dif-
ferent directions with different speeds. Suppose some source node
wants to deliver a message to the destination 10. After some time
the message reaches node 1 as shown by subfigure (a). Node 1 be-
comes the custodian of the message. It has three neighbors: 2, 3
and 4. Using some utility function, it finds out that node 3 is more
likely to meet the destination in the future than itself and others.
So node 3 is selected as the next custodian. The message is then
delivered to 3. In the next snapshot (b), node 3 selects the next best
candidate 6 based on the results of the utility function applied to
each of its neighbors and itself. In (c), node 6 selects node 8 using
the same method. Then finally in (d), node 8 is fortunate enough to
meet the destination 10 and hands it the message.

In the literature, many papers design utility functions by
recording contact history of nodes. This is motivated by a simple
observation: the history of contact between nodes contains valu-
able, but noisy information about the current network topology
(Dubois-Ferriere et al., 2003). Dubois-Ferriere et al. (2003) record
the history of last encounters between nodes. This method predicts
the future by just looking at one past data, the number of times
two nodes met last time. This utility function is simple but it
may not reflect the nature of future mobility. Chen and Murphy
(2001) consider not only that but also the frequency of nodes con-
tacting destination D in the past and calculate the average. In this
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method more information is included. However, it is also not ade-
quate to reflect mobility as shown in the example in the next sec-
tion. There are also some variations of these algorithms. For
example, Spyropoulos et al. (2004) record the time elapsed since
every other node was last encountered because the elapsed time
contains the relative location information of the nodes. Juang
et al. (2002) assign each node a hierarchy level based on its past
success in transferring data to the base station (destination). These
two methods are good for applications where the nodes do not
move very dynamically. If a network topology changes dynami-
cally, a node that was previously near the destination may no long-
er be the best communication target. Then, the proposed protocol
may mis-direct traffic frequently and get a poor delivery success
ratio.
Fig. 3. Illustration of meeting D in the t units of time.
3. Motivation

As stated above, we believe the information the existing papers
record is not comprehensive and there is still room to improve by
considering extended information in contact history of nodes so
that better prediction functions can be designed. The following
example motivates our idea.

In Fig. 2, suppose the current time is 6, the custodian meets two
hosts A and B and it wants to choose one of them to relay the mes-
sage. It will look at the contact history of both hosts with destina-
tion D. The contact history of host A with destination D (in Fig. 2a)
and B with D (in Fig. 2b) in the past six units of time are repre-
sented by solid dots in the figure. The future contacts of each host
with D in time units 7 and 8 are shown by not-filled dots. But this
information is not currently available to the custodian. Now at
time 6, which one to choose? A or B? That is, the custodian needs
to predict at time unit 7, which host, A or B, will have higher chance
to meet D in the future using some utility function.

1. If the last meeting times is considered as mentioned in Dubois-
Ferriere et al. (2003), during time unit 6, A met D six times and B
met D seven times, so B will be chosen as the candidate to relay
the message. But in reality, according to the figure, host A has a
tendency to contact D more and B’s tendency becomes quite
flat. At time unit 7, A will exceed B in the number of times to
contact D. That means, by just looking at the last meeting times
is not enough. We need to observe a longer history for the ten-
dency and apply the tendency to predict future number of
contacts.

2. If the average meeting times in the last six units of time is cal-
culated as in Chen and Murphy (2001), host A’s average is:
(2 + 2 + 4 + 4 + 6 + 6)/6 = 4 while B’s is: (6 + 6 + 6 + 6 + 7 + 7)/
6 = 6.3. So again B will be chosen. But A is a better candidate
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Fig. 2. The contact history of host
because it will meet D more and more. If the average method
is used, the meetings in the past are treated with equal weights.
Actually more recent meetings should be more important than
the meetings long time ago.

This example shows both the last meeting times and the aver-
age meeting times can mislead the routing sometimes. It motivates
us to use extended information in contact history to design better
utility functions to steer the routing in the right direction in DTNs.
4. Extended information model

In our extended information model, we require each host to re-
cord all the hosts that it has met in the last t ðt P 1Þ units of time.
And, unlike those in the literature that take an average of the past
meeting times, we weigh the meeting times differently because a
host that sees D 1 min ago is more likely to see it again in the fu-
ture than a host that sees D 1 day ago. We put different weights
on different meeting times. The more recent the meeting time,
the larger the weight it will get. The key point to the success of
our information model and the later routing protocols is the esti-
mation of the future number of contacts in time unit t þ 1 which
is denoted by ntþ1. In order to make a good prediction, we put for-
ward the following utility functions.
4.1. Weight and frequency function

In this function, see Fig. 3, we observe t time units before the
current time. Let ni be the number of contacts at time unit i. That
is, the candidate host met D nt times in time unit t;nt�1 times in
time unit t � 1; . . ., and n1 times in time unit 1. The formula to pre-
dict the future number of contacts is:

ntþ1 ¼
tnt þ ðt � 1Þnt�1 þ � � � þ 1 � n1

t þ ðt � 1Þ þ ðt � 2Þ þ � � � þ 1

The host with the highest value of ntþ1 will be chosen.
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s A and B with destination D.
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4.2. Regression functions

In this section, we put forward a set of formulas that use the
regression models to do the prediction. Let X-axis represent the
time unit i and Y-axis represent the number of contacts ni. We
can obtain t points ði;niÞð1 6 i 6 tÞ in the two dimensional space.
Now, the Least-Squares-Method can give a good prediction for
ntþ1. Depending on the regression models, we can have the follow-
ing functions.
4.2.1. Linear Regression
Although these t points ði;niÞ may not all lie on a line, we may

use a linear model y ¼ axþ b to predict ntþ1 (see Fig. 4). Since the
line y ¼ axþ b may not go through each point ði; niÞ, it is reasonable
to examine di ¼ ni � ðaiþ bÞ ¼ ni � ai� b, which is the difference
between the y-coordinates of the point ði;niÞ and the correspond-
ing point on the line y ¼ axþ b. The Least-Squares-Method crite-
rion for the ‘‘best” linear model approximation is to determine
the values of a and b that minimize the sum of squares of all y-dif-
ferences as follows:

Fða; bÞ ¼
Xt

i¼1

ðni � ai� bÞ2:

To minimize Fða; bÞ, we take the partial derivatives of Fða; bÞ and set
them equal to 0 to find the unique critical point for Fða; bÞ:

Faða; bÞ ¼ �
Xt

i¼1

2iðni � ai� bÞ ¼ 0;

Fbða; bÞ ¼ �
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Fig. 4. Linear Regression model.
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4.2.2. Weighted Linear Regression
It is natural to assume that a recent point ði;niÞ is more closely

related to the prediction of ntþ1 than a less recent point ði� 1; ni�1Þ.
So we add a different weight wi to each point ði;niÞ, where
wt > wt�1 > � � � > w1. (For example, one may use wi ¼ i.) The goal
of the Weighted Linear Regression is to minimize the sum of
weighted squares of y-differences:

WFða; bÞ ¼
Xt

i¼1

wiðni � ai� bÞ2:

To minimize WFða; bÞ, we take the partial derivatives of WFða; bÞ
and find the unique critical point:

WFaða; bÞ ¼ �
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4.2.3. Quadratic Regression
If we observe that distribution of these points ði;niÞ are not close

to any straight line, we may use a quadratic model y ¼ ax2 þ bxþ c
to predict ntþ1. In this quadratic model, the y-difference between
each point ði;niÞ and its corresponding point on the graph of
y ¼ ax2 þ bxþ c is given by ni � ai2 � bi� c. So the Least-Squares-
Method minimizes the following function:

Qða; b; cÞ ¼
Xt

i¼1

ðni � ai2 � bi� cÞ2:

Similarly, we can take the partial derivatives of Qða; b; cÞ to find the
unique critical point for Qða; b; cÞ. Then we obtain

ntþ1 ¼ ðt þ 1Þ2 t þ 1 1
� � a

b

c

2
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where
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4.2.4. Weighted Quadratic Regression
Similar to the Weighted Linear Regression, if we want to

emphasize more on the point ði;niÞ than its previous point
ði� 1;ni�1Þ, we may add a weight wi to each point ði;niÞ with
wt > wt�1 > � � � > w1. Then the goal of the Weighted Linear Regres-
sion is to minimize the following function:

WQða; b; cÞ ¼
Xt

i¼1

wiðni � ai2 � bi� cÞ2:

Then ntþ1 ¼ ðt þ 1Þ2 t þ 1 1
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4.2.5. Polynomial Regression and Weighted Polynomial Regression
If we observe that the distribution of these points ði; niÞ do not

closely follow any linear or quadratic model, we may use a polyno-
mial model of higher order to predict ntþ1. Furthermore, if we want
Fig. 5. Delivery ratio with
to emphasize more on the point ði;niÞ than its previous point
ði� 1;ni�1Þ, we may assign a different weight wi to each ði;ntÞ with
wt > wt�1 > � � � > w1. Results can be obtained similarly. Mathemat-
ically speaking, the higher the order of the polynomial, the more
accurate the prediction of ntþ1. On the other hand, the higher the
order of the polynomial, the more computational work is needed
for the prediction. So there is a trade-off between choosing the or-
der of the polynomial and the complexity of the calculation.
5. Routing algorithms

In this section, we describe various routing algorithms based on
the extended information model. Also, we present some related
routing algorithms for later simulation comparisons.
5.1. Extended information-based routing algorithms

Routing algorithms can be derived using the utility functions
based on the extended information model to steer the forwarding
in the right direction. Specifically, when a host needs to choose a
candidate from its cluster of neighbors, an extended information-
based utility function is selected from the above and each host in
the cluster will use the function to predict the number of contacts
ntþ1 with D in time unit t þ 1 based on its past history. The candi-
date with the highest number of contacts will be chosen to relay
the message. This method is based on the assumption that if a host
meets D very often in the past, it is very likely that it will meet D
again in the near future. Based on our extended information model,
we have the corresponding routing algorithms: Weight and Fre-
quency (WF), Linear Regression (LR), Weighted Linear Regression
(WLR), Quadratic Regression (QUADR) and Weighted Quadratic
Regression (WQUADR) algorithms.
different parameters.
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One problem that is associated with these utility-based routing
algorithms is that at the beginning it may take a while for the cur-
rent custodian to find the next best candidate. This is especially
true if the current custodian is far from the destination and its
neighbors all have poor utility values. A solution to reducing the
delivery latency is to initially use random forwarding, which is de-
scribed below, until the utility value gets higher (Spyropoulos
et al., 2004). This hybrid approach initially allows a message to ac-
tively explore the network until it finds a good carrier, and then it
uses the standard utility routing to efficiently reach the destina-
tion. In our simulations, all our schemes have been adapted to in-
clude this idea to reduce delivery latency.

5.2. Random algorithm

In the random algorithm, the current custodian selects the next
candidate randomly among the neighbors that it can reach.

5.3. Optimal routing algorithm

In the optimal routing algorithm, we assume that we know all
the topologies of the network as the nodes move. In that case, an
optimal path can be found from a source to a destination. This does
not seem practical, but it provides the optimal results for compar-
ison with other algorithms.

5.4. Direct routing algorithm

In the direct routing algorithm, a source holds the message until
it directly meets the destination and passes it the message. That is,
Fig. 6. Delivery latency wit
the source does not use any other node as an intermediate router.
This algorithm is used as the worst case scenario for comparison
with other algorithms.
6. Experimental results

In this section, we show experimental results using a simulator
written by ourselves in C language and using real wireless trace
data posted on Dartmouth College website (CRAWDAD). We com-
pare our algorithms with existing ones such as Last-time (Dubois-
Ferriere et al., 2003) and Average (Chen and Murphy, 2001) Rout-
ing Algorithms. For comparison, Random, Optimal and Direct Rout-
ing Algorithms are also included. Therefore, here is the list of
algorithms that we are going to compare:

1. The Direct Routing Algorithm (DIR).
2. The Random Routing Algorithm (RAND).
3. The Last-time Routing Algorithm (LAST).
4. The Average Routing Algorithm (AVG).
5. The Weighted and Frequency Routing Algorithm (WF).
6. The Linear Regression Routing Algorithm (LR).
7. The Weighted Linear Regression Routing Algorithm (WLR).
8. The Quadratic Routing Algorithm (QUADR).
9. The Weighted Quadratic Routing Algorithm (WQUADR).

10. The Optimal Routing Algorithm (OPT).

In order to compare routing strategies, we define two important
metrics to evaluate their performance. One metric is delivery ratio
and the other is delivery latency (Jones and Ward, 2006). The deliv-
h different parameters.
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ery ratio is the fraction of generated messages that are correctly
delivered to the final destination within a given time period. This
metric shows the ability of a strategy to deliver the message to
the destination within a specified period of time. The delivery la-
tency is the time between when a message is generated and when
it is received. A short delivery latency can benefit many
applications.

6.1. Experiments using our simulator

In the simulator we build, initially all nodes are randomly gen-
erated in a 100 m � 100 m area. A source and a destination are ran-
domly picked. Then these nodes move in different directions with
different speeds at every time step. We assume in our experiments
that if a node met the destination before, there is a tendency that it
will meet the destination again in the future. We call the length of
the time period we observe the network the total observation time.

First we look at the delivery ratio. When the total observation
time is short, the transmission range and the number of nodes
are small, it is very likely that a message may not reach the desti-
nation. We set the number of nodes n to be 15 and 20, transmission
range r to be 10 and 15, the length of one time unit l to be 5 time
steps and the number of time units t to be 3. The transmission
ranges are set small in our experiments because in a sparse graph
it is more obvious to see how far away these algorithms are from
the OPT algorithm. The total observation time is set as 30, 60, 90,
and 100 time steps, respectively. Each sample is run 1000 times.
The delivery ratios for each algorithm are recorded and averaged
for comparison in Fig. 5a–d.

From the figures, the delivery ratios of OPT and DIR provide the
lower- and upper-bounds of all the algorithms. Overall the regres-
sion functions are better than RAND, LAST, AVG and WF. Especially
Fig. 7. Delivery ratio with different parameters using
when the observation time is short (30 time steps), the difference
among them is large. That means, using these regression utility
functions can increase the chance to find a path to the destination
when time is short. As observation time increases, the difference
becomes smaller and smaller. If the observation time is long en-
ough, all algorithms can reach 100% ratio.

Next we compare the delivery latency of the algorithms. The
delivery latency is calculated by number of hops in this paper. Dif-
ferent from regular hop counting where one hop is counted when a
message is delivered from one node to another, here if the next
best candidate is still the current node and thus is equivalent to
the custodian delivering the message to itself at that moment,
hop count keeps accumulating. Since delivery latency is the param-
eter that we want to look at, we make the delivery ratio for each
algorithm 100%. In our experiments, setting the observation time
to 200 time steps is enough to achieve that. The length of one time
unit l is set at 5 and 10 time steps and the number of time units t is
set at 3 and 5. The transmission range r is set at 10 and 15, respec-
tively. The number of nodes n tried is 20, 40, 60, 80, and 100. Each
sample of parameters is run 1000 times. The results are presented
in Fig. 6a–d.

In the figures, DIR and OPT algorithms provide the upper- and
lower-bounds of delivery latency. If a custodian keeps holding
the message until it meets the destination itself as in the DIR algo-
rithm, the delivery latency is the longest. From the results we can
see that it is better for the custodian to forward the message to
some other node, even randomly. The three algorithms: Last,
AVG and WF provide similar results. The performance of Last is
not bad in the three considering the simplicity of information it re-
cords. The four regression algorithms are better than the previous
three. Thus the complexity of the algorithms does have a reward
here. However, the differences among the four regression algo-
Content (a) and (b) and Info traces (c) and (d).
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rithms are not obvious. Unless you know that the mobility of nodes
follows a certain pattern, these regression algorithms are already
good enough. That also explains why we do not further explore
higher order regression functions such as Polynomial Regression
and Weighted Polynomial Regression here. The OPT algorithm pre-
sents the shortest latency because if the changes of the topology
are all known, the shortest path from the source to the destination
can be found. Also we can see that the gaps in delivery latency be-
tween the three algorithms and the four regression ones are larger
in Fig. 6a and c than those in Fig. 6b and d. That is because in more
sparse graphs where the routing is more difficult, the regression
algorithms are more likely to deliver the message to the destina-
tion with a lower latency.
6.2. Experiments using real traces

In this section, we compare the above 10 algorithms using real
traces posted on CRAWDAD website (CRAWDAD). This is a Dart-
mouth college website posting wireless network data gathered
from real human mobility patterns for the research community.
The data resources we use here consist of contact traces between
short-range Blue-tooth enabled devices (iMotes Chaintreau et al.,
2007) carried by individuals in conference environment, namely
Content 2006 and Infocom 2006. In short, we call them Content
trace and Info trace.

We still use delivery ratio and delivery latency to compare the
10 algorithms in the last section. The delivery ratios of different
algorithms using Content trace are shown in Fig. 7a and b while
those of the Info trace are presented in Fig. 7c and d. Based on data
ranges in the traces, in both traces, we set l ¼ 100 and t to be 10
and 20, respectively. In the Content trace, the total observation
Fig. 8. Delivery latency with different parameters usin
time is set from 800K to 1.4M s. Here, K ¼ 103 and M ¼ 106. In
the Info trace, the total observation time is set from 210K to
270K s. In both traces, the results of the delivery ratio are similar
to those in our simulator above. The DIR and OPT algorithms pro-
vide the lowest and the highest delivery ratios. Here, the higher or-
der regression algorithms QUADR and WQUADR are better than
lower order regression algorithms LR and WLR, and the lower order
regression algorithms are better than simple utility algorithms WF,
AVG, LAST and RANDOM.

Now we look at delivery latency. For both traces, if we vary the
observation time and draw the delivery latency for different algo-
rithms as in the figures of delivery ratio, the results cannot be
clearly displayed due to the feature of the dataset. In that case,
to show our results better, we change the meaning of the horizon-
tal axis from ‘‘Time observed” to ‘‘Algorithm”. Now the ticks on the
horizontal axis represent the labels of the 10 algorithms. For exam-
ple, tick 1 represents Direct Routing Algorithm, tick 2 represents
Random Routing Algorithm, and so on. We set the observation time
to be 1M and 1:4M s for the Content trace, whereas for the Info
trace, we set the observation time to be 210K and 270K s. In both
traces, t ¼ 10 and l ¼ 100. In each setting, the delivery latency is
calculated and averaged over all the successful cases. The results
are shown in Fig. 8a and b for the Content trace and Fig. 8c and
d for the Info trace. As we can see, the OPT and the DIR algorithms
give the shortest and longest latencies. From the OPT algorithm,
the latency increases in the order of WQUADR, QUADR, WLR, LR,
WF, AVG, LAST, RAND and DIR. The results also match those in
our simulator in the last section.

In summary, from the experimental results using real traces and
our own simulator, we can draw the conclusion that gathering
more information in the contact history of nodes and using appro-
g Content (a) and (b) and Info traces (c) and (d).
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priate regression functions to process them can improve routing
efficiency in DTNs.

7. Conclusions and future work

In this paper, we developed efficient routing algorithms for
DTNs using an extended information model. In a DTN where nodes
move dynamically in different directions with different speeds, we
believe recording and processing the right information in the right
way will help a message to be delivered to the destination faster.
Experimental results from our own simulator and real wireless
trace data showed that our algorithms can give better performance
than those using simpler information and simpler processing
methods.

Our extended information model can be further improved. For
example, it can incorporate more important parameters to the sys-
tem such as energy and the future plans of hosts. As we know, one
of the scarcest resources of DTNs is energy. In many applications,
once the hosts are deployed, it is difficult to recharge them. In
the routing algorithms we propose, if a host meets the destination
very often, it will be used to relay the message so frequently that
its battery will be depleted very soon. In order to balance the en-
ergy in all the hosts, the information model should be extended
to include the energy parameter. Also, if more information can be
known about the hosts, for example, their future meeting sched-
ules with each other, the efficiency of the routing can be further
improved. The routing algorithm can be dynamically switched
from one to another when the future plan changes to best suit
the mobility of nodes. The concerns will be how to incorporate
the future plans into the information model and when to switch
the routing algorithm for the best results.

In addition, so far we have looked at the single-copy schemes. In
the next step, we are going to study multi-copy schemes using our
extended information model. How many copies are needed and
how the copies are distributed in each hop to find the path to
the destination efficiently will be the key points. That will be our
future work.
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